This paper presents a non-intrusive method for estimating the distance between a camera and a human subject using a monocular vision system and statistically derived interpupillary distance (IPD) values. The proposed approach eliminates the need for individual calibration by utilizing average IPD values based on biological sex, enabling accurate, scalable distance estimation for diverse users. The algorithm, implemented in Python 3.12.11 using the MediaPipe Face Mesh framework, extracts pupil coordinates from facial images and calculates IPD in pixels. A sixth-degree polynomial calibration function, derived from controlled experiments using a uniaxial displacement system, maps pixel-based IPD to realworld distances across three intervals (20–80 cm, 80–160 cm, and 160–240 cm). Additionally, a geometric correction is applied to compensate for in-plane facial rotation. Experimental validation with 26 participants (15 males, 11 females) demonstrates the method’s robustness and accuracy, as confirmed by relative error analysis against ground truth measurements obtained with a Bosch GLM120C laser distance meter. Males exhibited lower relative errors across the intervals (3.87%, 4.75%, and 5.53%), while females recorded higher mean relative errors (6.0%, 6.7%, and 7.27%). The results confirm the feasibility of the proposed method for real-time applications in human–computer interaction, augmented reality, and camera-based proximity sensing.
Loading....